
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 35

Web Security Challenges in Node.js Applications

Shashank Kaul 1, Hrittik Bhattacharjee 2, Barry C. K. 3, Gaurav Verma 4, J. Gowthamy 5
1, 2, 3, 4, 5 SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.

Abstract – Technology is growing at an exponential rate. New

platforms and frameworks are being developed to enhance the

capabilities of what can be developed and how. Node.js is a

platform that provides an event-driven and asynchronous I/O

platform for development using JavaScript. Now, Express is a

framework developed on the Node.js platform for building

flexible web applications and is very rapidly growing in

popularity amongst developers. However, for the cost of

availability and performance we sacrifice confidentiality thus

leaving applications vulnerable to many security threats. Threats

such as Cross-site Scripting (XSS), Injection, DOS attacks and

many more are now things that most people can learn on the

internet, making systems that do not take precautions very

vulnerable. We explore the possible ways someone with

malicious intent can carry out attacks when running frameworks

such as Express and implement methods to make Node.js web

applications secure for production.

Index Terms – Authentication, Data Validation, Injection,

Security, Node.js.

1. INTRODUCTION

Cyber security is a rapidly growing area of study and has

gained a large prominence over the Internet in the last decade.

Not only has the risk of being targeted by a cyber-criminal

increased but there has also been growth in educational

resources to learn how to do such activities. Web applications

are regularly exploited or attacked if correct measures are not

taken in development stages. Research in security and

exploits of frameworks has increased rigorously in the past

few years and well-established organisations invest a lot into

this field of study. Node.js [6] is a relatively new framework

that is built on Google Chrome’s V8 engine [9] to allow the

traditionally client-sided JavaScript language to be used in

creating servers and other functional modules. Node.js works

in an event-driven loop which allows for tasks to be processed

in a non-blocking or asynchronous paradigm. [1] Node shines

in building fast, scalable network applications, as it’s capable

of handling a huge number of simultaneous connections with

high throughput, which equates to high scalability. [1][2] In

this paper we discuss the types of ways web applications can

be targeted and exploited for vulnerable development. We

also discuss the ways to implement solutions for these attacks.

With the help of Express [2], a web framework for Node

developers which allow us to create web applications with

less code while still maintaining the main features of the

parent platform, we implement a social media website similar

to Reddit or Twitter which allows for basic tasks such as

creating of user profiles, creating and editing blog posts,

commenting and rating the posts.

In the following sections we discuss how the construction of

this application is laid out. We apply the traditional methods

of Node.js and Express development in the creation of this

application in an attempt to provide a basis for assessment.

We then research and implement various different aspects of

securing a web application in the proposed system.

2. RELATED WORK

Our API follows the RESTful paradigm and thus we manage

the CRUD operations of posts and comments as shown in the

following table.

PATH METHOD USAGE

/posts GET Displays all

posts.

/posts/new GET Show form to

create new

posts.

/posts POST Creates a new

post.

/posts/:id GET Display a

specific post.

/posts/:id/edit GET Show form to

update a

specific post.

/posts/:id PUT Update a

specific post.

/posts/:id DELETE Delete a

specific post.

Table 1 Applications API Routes

The above layout for our API routes makes it easier to

understand the workflow of the user post and comment

functionality.

We have taken into consideration the two most important

areas of any web application where security must be

implemented. In this section we highlight these 2 parts;

authentication with session management, and data storage.

Both modules discuss how we implement various npm

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 36

modules to create a working blog application to mimic real

world tasks.

2.1. Authentication and Session Management

HTTP is a state-less protocol and thus browser cookies are

used to maintain state. Most systems apply a session based

authentication method where the client connects to the server

to maintain a session-id in the browser’s cookies once

credential validation occurs. On the server-side, the

application checks if the session has been added to a list of

sessions. If so, further requests from the same client are

allowed to go through.

PassportJS [10] is a very commonly used npm package for

implementing various authentication strategies. We

implement a cookie-based local authentication system using

this package. The passport-local-mongoose package allows us

to use both the functionalities of mongoose and passport

together to carry out user authentication in local storage. The

passport-local-mongoose package provides us with

middleware attached to the schema it is added to. Various

functions such as register, authenticate, and support for flash

messages and provided in this middleware.

Fig 1.1 PassportJS Authentication Workflow

To maintain the user session we use an express module called

express-session which allows us to store all the required user

data within the browser cookies. This module allows for

setting of various properties of browser cookies including

validity and security.

In modern day browsers it is very easy to view one’s cookies

for individual websites. This allows attacks such as session

fixation, session donation and session brute forcing which can

be carried out to steal someone else’s session and thus fully

authenticate into the application.

2.2. Data Storage

A general purpose blog application allows registered users to

perform CRUD operations on posts and comments. Most

webservers implement storage of user accounts, user posts

and comments using either a relational or non-relational data

management system. In our case we avoided the use of the

MongoDB package and implemented the mongoose package

to create Schemas for user, posts and comments. This allows

us to predefine the layout of collections in a database. It also

gives us various functionalities including middleware, plugins

for validation and population.

User data, post and comment data is stored in is MongoDBs

BSON format by using mongoose middleware. We

simultaneously added middleware to check for comment and

post ownership by adding the middleware functions

checkPostOwnership and checkCommentOwnership. This

guarantees non-repudiation with content shared on the blog

application.

The schema defined for User, Posts and Comments is shown

in the following snippet.

var UserSchema = new mongoose.Schema({

 username: {

 type: String

 },

 password: {

 required: true,

 type: String

 }

…

…

…

});

Similarly the schema for Posts and Comments is created.

Mongoose offers references between schemas and thus we use

object id (MongoDB’s _id) references for each comment and

post to its respective author (user).

author: {

 id: {

 type: mongoose.Schema.Types.ObjectId,

 ref: 'User'

 },

 username: String

}

By adding this to the Post and Comments schema we store the

author’s _id value created by MongoDB into the author.id

property of the respective schema.

3. PORPOSED MODELLING

By introducing availability and usability we have disregarded

some important security aspects and maybe even added some

security threats. The proposed system discusses various

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 37

threats that could be used by exploiting our framework or lack

of code. These include, attacks against the authentication

system, session management and TLS, data validation, and

error handling. [5][3]

3.1. Authentication

The most common attacks on authentication are brute-force

attacks. A brute-force attack refers to trying all possibilities of

the solution until one matches. If authentication is not

correctly handled, once the attacker is aware of the server’s

route for login and a target username, he can send an infinite

number of requests for authentication using the brute-force

technique. This can be easily prevented by the use of a “rate-

limiting” function [5]. By creating middleware using the

express-rate-limiter package in node.js, we can assign a limit

to the number of post requests from one client to a specific

route.

var RateLimit = require('express-rate-limit');

var authLimiter = new RateLimit({

// Maximum of 10 requests

max: 10,

delayMs: 0

// disabled any delay between requests

}); //HTTP Code 429 on limit

app.use(‘/login’, authLimiter);

The algorithm used for brute forcing will always produce a

guaranteed result, however the time taken increases

exponentially with more complex passwords. We also added

flash messages to force use of numbers (0-9), both lower and

upper-case alphabets and symbols when creating passwords.

This functionality is provided by the passport middleware

discussed in the existing system. Hence, we secured possible

authentication problems with the system.

3.2. Session Management, Cookie Privacy and TLS

Since HTTP is stateless browsers maintain sessions with

servers by storing unique identifiers assigned by the server

within browser cookies. To prevent problems such as session

hijacking and sniffing [3] we need to implement some sort of

encryption/decryption infrastructure to hide data being sent in

the HTTP headers and body from malicious users.

To do this, we implement Transport Layer Security [6][4] on

a Node.js server. For development purposes we created a self-

signed certificate however valid certificates are required for

production environments. The snippet of code below shows

how the https module can be used to save the key and

certificate files to be used by the server. We add the certificate

and key when using the createServer(options, callback)

function.

var fs = require('fs');

var https = require('https');

var app = express();

var options = {

 key: fs.readFileSync(

 __dirname +'/certs/key.pem'),

 cert: fs.readFileSync(

 __dirname +'/certs/cert.pem')

};

// …EXPRESS CODE HERE

https.createServer(options,

 function(req, res) {

 res.writeHead(200);

 res.end("HTTP server running.\n");

}).listen(8000);

However this is not considered enough. There are methods for

tricking the client into downgrading the connection to http or

methods designed to break the SSL encryption called SSL-

stripping. To avoid this we must add HTTP Strict transport

security (HSTS)[6]. The mechanism of HSTS is to send a

Strict-Transport-Security header to the client specifying when

the SSL policy will expire. The browser will then default to

HTTPS when communicating with the application until this

header expires. This is done by adding the following piece of

middleware [6].

app.use(function(req, res, next) {

var aYear = 60 * 60 * 24 * 365;

res.set(

'Strict-Transport-Security',

 'max-age='

+ aYear +';includeSubdomains'

);

next();

});

Here we add the Strict-Transport-Security header with the

expiry within a year. Also we specify to include subdomains

of the host within the policy. Node.js does not set HTTPS by

default and so to prevent this from creating problems we must

also add a redirect for any request to the http application. This

is easier to write using Express as follows:

app = express();

app.get('*',function(req, res){

 res.redirect(

 'https://'+req.headers.host+req.url

);

}).listen(80);

Our application now runs TLS over HTTP correctly and our

application is free from session hijacking attacks and sniffing.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 38

3.3. Data Validation

3.3.1. Cross-site Scripting (XSS)

A social media web application consists of many modules

which require user input. This input is generally sent from

client to server by the use of HTML forms to send an HTTP

post request. If the inputs of these forms are not checked and

filtered, an attacker can execute code on the server side by

formatting the input. This is called Cross-Site Scripting

(XSS). XSS is of two types; reflected XSS and stored XSS.

Reflected XSS occurs when the attacker injects executable

JavaScript code into the HTML response with specially

crafted links while Stored XSS occurs when the application

stores user input which is not correctly filtered. It runs within

the user’s browser under the privileges of the web application

[10].

To add the first layer of protection against XSS we set the

HTTP headers ‘X-XSS-Protection’ and ‘Content-Security-

Policy’ to activate protection present within modern browsers.

Node.js provides us with the helmet-csp which provides an

easier way to add a Content Security Policy. [5]

var csp = require('helmet-csp');

app.use(csp({

 // Directives

 defaultSrc: ["'self'"],

 scriptSrc: ["'self'", "'unsafe-inline'"],

 styleSrc: [‘bootstrap.link’],

 imgSrc: ['img.com', 'data:'],

 sandbox: ['allow-forms', 'allow-scripts'],

 reportUri: '/report-violation',

 // Set to an empty array

 // to allow nothing else through

 objectSrc: [],

 // All browsers report errors

 reportOnly: false,

}));

The npm module helmet provides us with a variety of

properties to adjust the content security policy easily. As

shown above, we can use properties like defaultSrc, scriptSrc,

styleSrc, imgSrc, objectSrc and many more to adjust the

policy. [6]

To further the sanitization of inputs, we implemented the

express-sanitizer library which is a Node.js library for

filtering of requests from the client. This library provides us

with middleware to escape all request/response values. Thus

any user input containing executable code will be sanitized

into a regular string.

3.3.2. NOSQL Injection

Many developers have shifted from using relational databases

such as PostgreSQL and MySQL to non-relational databases

such as MongoDB and Redis. These NoSQL databases allow

for rapid scalability and quicker processing of data. However,

just like their relational-db system counter parts, they are

vulnerable to injection attacks. An example of an injection

attack for MongoDB is given below.

User.findOne({email:email, password:password})

 .then((user) => {

 if(!user) {

 return Promise.reject(

 'Incorrect email or password'

);

 } else {

 return Promise.resolve(user);

 }

}).catch((e) => {

 return Promise.reject(e);

});

The above snippet shows a mongoose query for finding data

in the User schema. This code can be exploited by passing
{"&ne":""}

as the password. This will cause the

condition for finding the user to be validated as true and the

function will return the user with the matching username.[12]

Practically,

https://.../login?user=Jack&password[%24ne]=

This can be avoided by removing the password object from

the findOne params and by adding bcryptjs hashing in the

login/registration handlers. Thus we will be able to generate a

hash for the password input and compare it to the original

value.

3.3.3. Code Injection

Node.js provides many functions called eval, exec, spawn,

fork, and Function that allows the developer to create

functions out of string input and execute them [5][6]. Code

injection vulnerability might be exploited if the developer has

assumed that the user will always put in valid input and has

not restricted string input to only valid cases.

In practice, if you have a POST request like:

https://example.com/download?file=user1.txt

In the above example, the request parameter file is running the

function exec (shown below) to interpret what file to return. A

user could abuse this and execute arbitrary commands on the

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 39

server machine by changing the value of the file parameter

into something similar to:

https://.../download?file=user1.txt%3Bcat%20/etc/passwd

In this example %3B becomes the semicolon, so multiple OS

commands can be run.

In Node.js,

child_process.exec(‘ls’,

 function(err, data) {

 console.log(data);

 });

According to the documentation, child_process.exec makes a

call to execute /bin/sh, so it is a shell interpreter and does not

run individual programs. This is problematic when user input

is passed to this method as the attacker can manipulate this

string. To overcome this issue we use child_process.execFile.

The execFile function executes the specified script/program

and stores the output in the variable stdout. We also match the

input from the user to unwanted expressions. This is done by

using the in-built JavaScript function match which allows us

to match regular expressions to a string. If any value matches

to the specified input then we terminate the request from the

user and respond with status 400. An example of the above to

solutions is given below:

app.post('/download', function (req, res) {

 var file = req.body.file || “ ”;

 // Test for everything besides

 // alphanumeric, fullstop and -

 if(host.match(/^[-\.]|[^a-zA-Z0-9\-\.]/)) {

 res.status(400).send('Invalid input');

 return;

 }

 execFile('/usr/bin/script', [host],

 function (err, stdout, stderr) {

 if(err || stderr) {

 console.error(err || stderr);

 res.sendStatus(500);

 return;

 }

 res.send(

 '<h3>Downloading link for '+file+':</h3>'+

 '<pre>' + stdout + '</pre>'

);

 });

});

3.4. Error Handling

Due to the single threaded event loop of Node.js, a single

unhandled error could cause a crash on the server. Handling

of errors in Node.js has been left completely in the user’s

control. Traditionally this problem would be tackled by

implementing a try-catch statement wherever fragility with

exceptions might occur. But no matter how hard we try, there

will still be some errors that are not handled by these try-

catch statements.

Memory leaks that may accumulate and cause a crash in the

process are bound to arise when only catching errors. We

study the impact of forking of the main process into multiple

child processes. When one child process encounters an error

that process would be immediately stopped and a new fork

would be created. This prevents the resources that have been

leaked from accumulating. We look into this by using the

cluster module in Node.js. [6]

Fig 1.2 Creating forks on the master process

By using this module we are able to create forks depending on

the number of CPUs available at the time of execution. Each

fork is called a worker. The Node.js Domains API provides a

handler for all error instances. Any error that occurs on the

server will be sent to the domain on(‘error’, …) handler.

However to use it without any loopholes we must combine the

use of domains and clusters. Each worker will create its own

domain so that we it can catch errors and re-fork correctly.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 6, Issue 5, May (2018) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 40

// the worker

var domain = require('domain');

var server = require('https')

.createServer(

 options, // Cert + Key

 function(req, res) {

 var d = domain.create();

 d.on('error', function(er) {

 console.error('error', er.stack);

 try {

 // Close down the cluster

 // in 30 seconds no matter what.

 var killtimer = setTimeout(

 function() {

 process.exit(1);

 }, 30000);

 killtimer.unref();

 server.close();

 cluster.worker.disconnect();

 res.statusCode = 500;

 res.setHeader(

 'content-type',

 'text/plain'

);

 res.end(An Error occurred! \n');

 } catch (er2) {

 console.error(

 'Error sending 500',

 er2.stack

);

 }

});

// we need to explicitly add

// req and res to the domain.

d.add(req);

d.add(res);

// handler function in the domain.

d.run(function() {

 handleRequest(req, res);

});

});

The above solution provides an overall improvement to the

application up-time and security.

4. CONCLUSION

By following a modular approach for eliminating security

threats, we have immensely narrowed down the

vulnerabilities in our web application.

This study shows that Node.js can be used correctly and

securely in production environments with regular

maintenance and updation of npm modules. We further

require to investigate vulnerabilities present in ExpressJS

template engine to assess problems with XSS that might occur

on the front-end.

REFERENCES

[1] Andres Ojamaa, Karl Duuna. “Assessing the Security of the Node.js
Platform”. Proc. of the International Conference for Internet

Technology and Secured Transactions. Dec 2012.

[2] Mr. Ninaad Nirgudkar, Ms. Pooja Singh. “The MEAN Stack”.
International Research Journal of Engineering and Technology. May

2017..

[3] Arunima Jaiswal, Gaurav Raj, Dheerendra Singh. "Security Testing of
Web Applications: Issues and Challenges”. International Journal of

Computer Applications. Feb 2014.

[4] L. C. Paulson.“Inductive analysis of the internet protocol TLS”. ACM
Trans. Computer Systems Security vol. 2, no. 3, pp. 332–351, 1999.

[5] Gergely Nemeth. “Node.js Security Checklist”. RisingStack Online

Blog. Oct 2015.
[6] Karl Duuna. “Secure Your Node.js Web Application.” Dec 2015.

[7] Joyent, Inc. Node.js homepage. [Online]. Available: http://nodejs.org/

[8] J. Wegner. Why Node.JS? Security. [Online]. Available:
http://www.wegnerdesign.com/blog/why-node-js-security/

[9] Google, Inc. V8 JavaScript Engine. [Online]. Available:

http://code.google.com/p/v8/
[10] PassportJS. [Online] Documentation: http://www.passportjs.org/docs/

[11] Open Web Application Security Project. [Online]

https://www.owasp.org/
[12] OWASP: Testing for NOSQL Injection. [Online]

https://www.owasp.org/index.php/Testing_for_NoSQL_injection

http://nodejs.org/
http://www.wegnerdesign.com/blog/why-node-js-security/
http://www.passportjs.org/docs/
https://www.owasp.org/
https://www.owasp.org/index.php/Testing_for_NoSQL_injection

